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A new approach to the theory of projection methods is developed in which the objective is 
to determine a projected solution to any desired accuracy for a fixed choice of the projection. 
Neither the structure nor the range of the projection is altered to achieve increased accuracy. 
Instead, an operator equation is derived for the projected solution. Successive approximations 
of this equation give rise to a sequence of accelerated projection methods whose solutions 
converge to the projected solution. Error expressions are obtained and several numerical 
examples of solving linear integral equations of the second kind are given. 

1 .O INTRODUCTION 

Projection methods form a class of well-known numerical techniques for 
constructing approximate solutions of the operator equation y = g + Ky. Here y and 
g are elements of a Banach space and the compact linear operator K is such that 
I-K is invertible. These methods employ a bounded projection P to represent the 
solution in the form y = Py + (I- P) y. If P is chosen appropriately, Py provides a 
good approximation to y. But in general, Py can be determined only approximately. 

P is often chosen so that its range is finite-dimensional and an approximation to Py 
is obtained by solving a finite system of linear algebraic equations. Such is the case, 
for example, with the well-known methods of collocation [l-3], moments [4-6], and 
Galerkin [7-lo]. They provide approximate solutions ~7 satisfying 

II&J - Fll = @(max(ll g - pgll, IIK - WI))9 
where II - II denotes the appropriate norm. If the accuracy obtained with a given 

choice of P is inadequate it is necessary to consider a projection P with a more 
complicated structure and/or a range of larger dimension so that 11 g - Pgll and 
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[(K - PKll can be made smaller. This results in computational complexities associated 
with increasingly large systems of equations. 

The present work develops a different approach to projection methods in which the 
objective is to determine Py to any desired accuracy for a fixed choice of P. Neither 
the structure of P nor its range are altered to achieve increased accuracy. Instead, an 
operator equation is derived for Py. This equation is developed in the form of an 
infinite series defined by the iterates of K - PK. Successive truncations of the series 
defines a sequence of higher order schemes whose solutions provide a sequence of 
approximations to Py. Most importantly, the equations to be solved in the higher 
order schemes are no more complex than that for the first order approximation. Only 
the routine computations to determine the elements in the scheme increase in amount 
with the order. An analysis of the nth truncation provides the estimate 

IIPY - u,II = WIK - WI”) 

for the accuracy of the nth approximation u, to Py. The first order scheme n = 1, 
yields an approximation to Py which is essentially equivalent to that obtained from 
the standard methods since the latter are typically in error by @(I/K - PKII). The 
second order scheme n = 2, results in an error 8(llK - PKl12). To achieve a 
comparable accuracy with the first order scheme requires in general, a significant 
increase in the complexity of P and in the corresponding computational effort. 

This can be seen readily in the particular case of the projections used to generate a 
collocation scheme. Here the range of P is finite dimensional and Py = PN y depends 
on the values of y at N preassigned mesh points. Each of the approximates u, is 
obtained by solving an N x N system of linear equtions whose solution approximates 
y at the mesh points. Typically II K - PN K II = @(l/N). Hence doubling the number of 
nodes by changing P,,, to P,, will only halve the error in the first order scheme at the 
2N nodes. But the second order scheme associated with PN will produce a far smaller 
error 8(1/N2) at the N nodes. Thus the nodal values of y can be obtained to any 
desired accuracy without increasing the number of nodes. Accelerated convergence at 
selected mesh points has been discussed previously, see [ 111. However, these super- 
convergence results apply only at “Gaussian” mesh points and moreover cannot be 
improved without changing the projection. The important and distinctive features in 
the present technique are the arbitrariness of the mesh and the use of a fixed pro- 
jection. 

The primary objective generally is to obtain an accurate approximtion at the node 
points. But this .does not ensure accurate interpolation between the nodes. A second 
operator equation for the solution y in terms of the projection Py is developed for this 
purpose. It is shown that each approximation to Py provides a corresponding approx- 
imation to y with an error of the same order as that associated with the nodes. 

In the application to integral equations, it is necessary to evaluate one or more 
iterates of the kernel of K depending upon the order of approximation desired. For 
some kernels it may be possible and feasible to obtain several iterates by elementary 
integration. In a particular case, for some order schemes it may be necessary to resort 
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to numerical integration. An integration technique accurate to the order of the error 
in the scheme must be employed and this represents the most serious limitation to 
achieving an arbitrary accuracy. 

The utility of this method and its superiority over existing techniques is 
demonstrated by treating several nonhomogeneous integral equations of the Fredholm 
type that have been studied previously. The first is a problem that can be solved by 
elementary means but provides a transparent model for exhibiting accelerated 
convergence even in the neighborhood of an eigenvalue. Two other examples treated 
are nontrivial problems drawn from different areas of applied physics. The first of 
these is the singular Kirkwood-Riseman equation that occurs in polymer physics. 
The second is Love’s equation, which appears in electrostatics. 

2 

2.1. General Theory 

Consider the operator equation 

y=Ky+ g, (2.la) 

where y and g are elements of a Banach space B, and K is a compact linear operator 
on B such that Z-K is invertible. Let P be a bounded linear projection on B. The 
object is to derive an equation for the projection of the solution to Eq. (2.1 a). This is 
achieved as follows. ’ 

Equation (2.la) can be written 

y=g+KPy+K@, (2.lb) 

where Q = Z - P. P applied to Eq. (2. lb) yields 

Py = Pg + PKPy + PK@ (2.2) 

and Q applied to Eq. (2.lb) yields 

QY = Qg + QKPV + QKQY. (2.3) 

If Z - QK is invertible an equation for Py is obtained by solving (2.3) for Qy and then 
substituting into (2.2). This gives 

Py-PK(Z-QK)-‘Py=Pg+PK(Z-QK)-‘Qg, (2.4) 

’ The derivation of Eq. (2.4) presented above was suggested by one of the reviewers, I. H. Sloan. For 
the present purposes it is more transparent than the one originally provided by the authors. 
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which has Py as its only solution, since the operator 

R =Z-PK(Z- QK)-‘= (I-K)(Z- QK)-’ 

is invertible. If )I QKll < 1 the nth order projection scheme 

n-l n-1 

un -PK 2 <QKr' u,=Pg+PK 2 CQKr'Qg (2.5) 
j=O j=O 

is obtained from (2.4) by replacing (Z - QK)-’ with the (n - 1)st truncation, 
2;:; (QKY’, of (Z - QK)- ’ = Cjtfo (QKr’. 

The operator 

n-1 

.R, = Z - PK c (QKr’ = (Z - K + PK(QK)“)(Z - QK)-’ 
j=O 

is invertible if 

E, = ll(Z- K)-‘PK(QK)“(I < 1 (2.6) 

with (IR;‘II < 2(1 - &,)-I Il(Z - K)-‘11. And it follows from (2.4) and (2.5) that 

Py - u, = R,‘PK(QK)” (Z- QK)” (Qg + Py) = R,‘PK(QK)“y 

so that the error associated with the nth order scheme is 

II@--u,ll =@(llK-PW). (2.7) 

Since {Ed}:‘. , is a monotonic sequence decreasing to zero, it follows that (2.6) holds 
for all n if .si < 1 and can always be achieved for sufficiently large n. For small 
values of n, condition (2.6) may be overly restrictive. Then the alternative conditions 

lITnIl < 1 (2.8) 

obtained from R, = (Z - K)(Z + T,) with 

I 
n-1 

T,=(Z-K)-’ QK-PK c (QKr’ 
j=l I 

may be more useful. 
The first and second order schemes are 

u,-PKu,=Pg+PKQg, (2.9) 

u2 - PKu, - PKQKu, = Pg t PKQg + PKQKQg. (2.10) 

Galerkin’s method results from (2.9) by neglecting the term PKQg. Condition (2.8) 

581/45/1-E 
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for the first order scheme is the same as that derived in 171 for Galerkin’s method, 
namely, 

ll(Z-K)-’ QKll < 1. (2.11) 

For the second order scheme, (2.8) is 

[[(I-K)-‘(I-PK)QKII < 1. (2.12) 

A representation for the solution y in terms of Py and g can be obtained from 
(2.la) by applying Q to (2. la) to yield 

V-QK)y=Py+Qg. (2.13) 

Then the error estimate 

for the approximate solution 

n-l 
y,= C <QKr’tu, + Qs) (2.14) 

j=O 

follows from (2.13) and (2.7). These approximate solutions represent iterates of the 
projection approximates u, and thus generalize the standard approximate y =: y, = 
u,+ Qg- 

2.2. An Alternate Theory 

The discussion presented in the previous section is based on the assumption that 
11 QKll < 1, a c on 1 ion expressing the attempt to employ PK as an approximation to d’t’ 
K. An alternate approach might employ KP; then it is necessary to require I( KQ)I < 1. 
In this case the analogue of (2.4) 

Py-P(Z-KQ)-‘KPy=P(Z-KQ)-‘g 

is obtained from (2.4) using the identity 

K(Z-QK)-‘=(I-KQ)-‘K. 

And the nth order projection scheme 

n-1 K-1 

wn-P c tKQ)/Kwt=P c WQy'g 
j=o j=o 

approximates 4, in the sense 

(2.15) 

(2.16) 
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provided (2.6) is satisfied. Since (2.15) differs from (2.5) only in the inhomogeneous 
term, the first order scheme is (2.9) without the term PKQg and is therefore the 
Galerkin method. The second order scheme is (2.10) without the term P(KQ)’ g. In 
addition, 

Py - w, = R,‘P(KQ)” y = R,‘P(KQ)” QY 

and the estimate (2.16) is easily improved to include an extra factor of ]]Qy]]: 

llpr-%lll=@w-JwI”IIeyIl)* (2.17) 

For n = 1, this coincides with a result given in [ 111 where first order methods alone 
are employed. 

The approximate solution in this case is 

n-l 

Y (‘) = c (KQ)’ (g + Kw,). 
j=O 

(2.18) 

It is obtained from (2. la) written in the form 

(I-KQ)y= g+KPy 

and represents iterates of the projection approximates w,. For n = 1, (2.18) coincides 
with results given in [ 31 for improving the Galerkin approximate. The error 
associated with (2.18) is of the same order as (2.17). 

3.1. Applications 

3 

In this section higher order projection schemes are used to analyze several 
examples of linear integral equations of the type 

Y(X) = g(x) + 1 Ib W, t) y(t) & a<x&b. (3.1) 
a 

Here Iz is a parameter, g is a bounded function and the integral operator 

Ky = A 
I 
b k(x, t) y(t) df 
a 

is assumed to be a compact operator from Lm[a, b] to C(a, b], with ]I . ]I denoting the 
sup norm. The compactness of K is assured if 1115: ] k(x, t)l dt ]I is finite and if 

6’(e) = sup sup Ib ] k(x, r) - k(t, e)l d{ --t 0 (3.2) x Ix-rl<r (I 

as E 10, see [7]. 
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The projection methods employ a member P,, 0 < 6 < a,, of a one parameter 
family of bounded projections on Lm [a, b] with a range R, satisfying 

for each q in C[a, b]. Here m(r, S) denotes the modulus of continuity of q. It follows 
that 

IIK - PA = @(InI IIPSII fw)>Y (3.3) 

(see [2]) and thus the condition II QKll < 1 is satisfied if llPsll e(s)+ 0 with 6--+ 0. 
For the examples presented here, II P, II = 1 and therefore II QKll < 1 follows from (3.2) 
and (3.3). 

3.2. A Model Problem 

The degenerate Fredholm integral equation 

y(x)= 1 +Aji exe%(t)dt= 1 +Ky (3.4) 

is easily solved and provides insight into the method of Section (2.1). In addition 
comparisons with previously published results are possible. In [ 111, Eq. (3.4), with 
A= 2, is used to demonstrate the superconvergence properties of piecewise 
polynomial Galerkin approximations, in particular a Galerkin method with a linear 
spline subspace. Consequently the projection used here is the piecewise linear inter- 
polant 

j=O 

defined on a uniform mesh 0 =x0 < x, < . . . 

Tj(X) = 
X-"j-1 

3 
Xj-"j-1 

= 
xj+l -x 

9 
xj+1 -xj 

forO<j<Nand 
= 0, 

To(X) =E, 
1 0 

= 0, 

r&l = 
x--N-, 

7 
TV-XN-1 

= 0, 

< x,,, = 1, xj = j/N, with 

Xi-1 <X<Xj> 

xj<x Cxj+19 

otherwise, 

x,<x <x1, 

otherwise. 

XN-1 <x<x,, 

otherwise 

(3.5) 

(3.6) 

(3.7) 
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It follows from (2.4) that the interpolant p= Py of the solution to (3.4) satisfies 

Y(x)-A(1 -WA)-’ i czo e%j(x)) j; e-F(t) dt= 1 (3.8) 

provided N is selected so that ] ol ] < 1. Here 

For A# 1 it is easy verified that the solution of (3.4) is 

y(x)= 1 +A(1 -A)-‘(1 --e-‘)eX 

and that 

Py(x) = 1 + A(1 -A)-’ (1 -e-l) 2 exjrj(x) 
j=O 

(3.9) 

(3.10) 

is the solution of (3.8). For L = 1 neither Eq. (3.4) nor (3.8) has a solution. 
The nth order projection scheme (2.5) is 

u,(x) - A.(1 - on)-’ (1 - &A”) (,=, &r,(X)) 1: k?-%,(t) dt = 1 : 

and the nth order approximate to ~7 is 

U,(X) = 1 + A(1 -e-‘)(l - CU”A”)LI;‘@) 5 exjrj(x) (3.11) 
j=O 

providedd,(A)=l-I+(l-w)o”l”+‘#O. 
Equation (3.10) gives the interpolant p exactly and thus the error associated with 

(3.11) is 

En@, N) = m;x 17(x) - u”(x)] = ]A(1 -A)-’ (e - 1) w”A”(l - oJ.)d;‘(A)]. 

This expression is tabulated in Tables I.a, 1.c and 1.d for selected values of I = 2, 
1.001 and 1.00001, respectively. Table 1.b contains results reported in [ 111 for the 
maximum error at the 2N Gauss points 

q = i/N + (1/2N)( 1 k l/d), i = 0, 1 ,..., N - 1, 

obtained from a linear spline Galerkin analysis of (3.4) with A= 2. 
An inspection of Table 1.a and 1.b shows that the second order scheme provides a 

accuracy at the uniform mesh points that is comparable with that achieved at the 
Gaussian points in [ 111. The third and fourth order schemes each achieve an 
accuracy that is in excess of these superconvergence results. 
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TABLE La 

Maximum Error Associated with (3.11) for L = 2 

N 1st order 2nd order 3rd order 4th order 

2 0.1386 E+OO 
4 0.3550 E-01 
8 0.893 1 E-02 

16 0.2236 E-02 
32 0.5593 E-03 
64 0.1398 E-03 

128 0.3496 E-04 
256 0.8740 E-05 
512 0.2185 E-05 

1024 0.5457 E-06 

0.6344 E - 02 
0.3784 E - 03 
0.2339 E - 04 
0.1458 E - 05 
0.9106 E -07 
0.5690 E - 08 
0.3556 E -09 
0.2223 E - 10 
0.1389 E- 11 
0.8666 E - 13 

0.2656 E-03 
0.3949 E-05 
0.6095 E-07 
0.9493 E-09 
0.1482 E- 10 
0.2315 E- 12 
0.3618 E- 14 
0.5652 E- 16 
0.8830 E-18 
0.1376 E-19 

0.1116 E-04 
0.4123 E-07 
0.1588 E-09 
0.6181 E- 12 
0.2412 E - 14 
0.9421 E- 17 
0.3680 E - 19 
0.1437 E - 21 
0.5614 E - 24 
0.2185 E - 26 

TABLE Lb 

Maximum Error for (3.4) with ?, = 2 as reported in [ 1 l] 

N At the nodes At the Gauss points 

2 0.627 E -01 0.535 E-02 
4 0.168 E-01 0.815 E-03 
8 0.434 E-02 0.116 E-03 

16 0.110 E-02 0.155 E-04 
32 0.278 E-03 0.201 E-05 
64 0.697 E-04 0.255 E-06 

Table 1.c and 1.d illustrate the behavior of the first four projection schemes as I 
approaches the eigenvalue Iz = 1. 

For I = 1.001 it is apparent that max 1 jr(x)1 is approximately 1.7E + 03. Thus 
Table 1.c indicates that a 1% error is assured by the first, second, third, and fourth 
order schemes with 63, 5, 2, and 2 nodes, respectively. But in comparison, for 
3, = 1.00001, max 1 y(x)1 is approximately 1.7E + 05 and Table 1.d indicates that 
1,024 nodes are required to assure a 1% error using the first order scheme. The 
second, third, and fourth require 16, 4, and 2 nodes respectively. 

From the general error estimates (2.7) it is evident that the gain in accuracy 
achieved by using more complex interpolants is significantly amplified by each of the 
higher order schemes. For example, the preceding analysis of (3.4) employing a 
piecewise linear interpolant resulted in a nodal error of’ the order (l/N)*“, where 
N(+ ao) is the number of nodes and n is the order of the scheme. By comparison a 
similar analysis of (3.4) based on a piecewise smooth cubic interpolant results in a 
nodal error of the order (l/N)‘“. The exact error expression for this case with A = 2 is 
tabulated in Table I.e. Hence for the model problem (3.4) a first (second) order cubic 
scheme is comparable with a second (fourth) order linear scheme. 
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TABLE 1-c 

Maximum Error Associated with (3.11) for L = 1.001 

N 1 st order 

2 0.1642 E+04 
4 0.1444 E+04 
8 0.9735 E + 03 

16 0.4228 E + 03 
32 0.1296 E + 03 
64 0.3433 E + 02 

128 0.8713 E + 01 
256 0.2186 E+Ol 
512 0.5471 E + 00 

1024 0.1367 E+OO 

2nd order 

0.1417 E+04 
0.4852 E + 02 
0.2934 E + 01 
0.1827 E + 00 
0.1142 E -01 
0.7134 E-03 
0.4459 E - 04 
0.2787 E - 05 
0.1741 E -06 
0.1087 E - 07 

3rd order 

0.1618 E +02 
0.2465 E +OO 
0.3819 E -02 
0.5955 E - 04 
0.9300 E -06 
0.1453 E-07 
0.2270 E - 09 
0.3547 E - 11 
0.5541 E - 13 
0.8636 E - 15 

4th order 

0.3435 E +00 
0.1288 E -02 
0.4981 E-05 
0.1941 E-07 
0.7576 E - 10 
0.2959 E - 12 
0.1156 E - 14 
0.4515 E- 17 
0.1763 E - 19 
0.6864 E - 22 

TABLE Ld 

Maximum Error Associated with (3.11) for L = 1.00001 

N 1st order 2nd order 3rd order 4th order 

2 0.1718 E +06 0.1758 E+O6 0.8358 E 05 + 0.3487 E + 04 
4 0.1715 E +06 0.2707 E 06 + 0.2422 E +04 0.1282 E+02 
8 0.1705 E+06 0.3519 E +05 0.3804 E 02 + 0.4957 E - 01 

16 0.1667 E +06 0.1842 E +04 0.5933 E +00 0.1932 E - 03 
32 0.1530 E + 06 0.1139 E+03 0.9265 E - 02 0.7540 E - 06 
64 0.1152 E+06 0.7115 E+Ol 0.1448 E-03 0.2945 E - 08 

128 0.5794 E + 05 0.4447 E +OO 0.2262 E - 05 0.1150 E - 10 
256 0.1939 E + 05 0.2779 E - 01 0.3534 E - 07 0.4493 E - 13 
512 0.5295 E + 04 0.1737 E-02 0.5521 E -09 0.1755 E - 15 

1024 0.1354 E + 04 0.1084 E - 03 0.8604 E-11 0.6831 E - 18 

TABLE 1.e 

Maximum Nodal Error Associated with the First Four Projection Schemes Employing a Piecewise 
Smooth Cubic Interpolant to Analyze (3.4) with 1 = 2 

N 1 st order 2nd order 3rd order 4th order 

2 0.6010 E - 03 0.1051 E-06 0.1837 E - 10 0.3212 E 14 - 
4 0.3736 E-04 0.4061 E - 09 0.4414 E - 14 0.4798 E 19 - 
8 0.2332 E - 05 0.1582 E - 11 0.1073 E - 17 0.7282 E 24 - 

16 01457 E-06 0.6175 E - 14 0.2618 E - 21 0.1110 E-28 
32 0.9104 E-08 0.2412 E - 16 0.6389 E - 25 0.1693 E-33 

Note. The mesh is uniform with N nodes. 
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3.3. A Singular Integral Equation 

The weakly singular linear integral equation 

y(x)= g(x)+l j1 Ix-p’(t)& O<a< 1, 
-1 

(3.12) 

appears in the theory of intrinsic viscosity, [ 121. Equation (3.12) with g(x) = x2 and 
a = l/2 has been the subject of many investigations. A Chebyshev series approx- 
imation is obtained in [ 131. A polynomial collocation technique is discussed in [3]. 

The present analysis of (3.12) employs the method of Section (2.1) with 

PY = 5 Y(x;“) e,(x), N> 1. (3.13) 
i=l 

The projection (3.13) represents a piecewise constant interpolant of y on a uniform 
mesh: -1 =x, < x1 .a. ( x, = 1, xi = -1 + 2iN-‘. The midpoint and the charac- 
teristic function of the interval (xi-r, Xi] are denoted by XT and ci(x) = 1 (0) for 
xi-r < x < xi (otherwise). Because of their simplicity, such interpolants are widely 
used in practical computations, particularly in higher-dimensional spaces. The 
construction of a step function approximation to the solution of (3.12) is described 
in [14]. 

The disadvantage of (3.13) is the relatively slow rate of convergence that is 
associated with the accompanying Galerkin method. For instance, the estimate 
@(]A 1 (2/N)“‘) for the convergence rate of the first order scheme (2.9) follows from 
(3.2) and (3.3) with 6 = 2N- ‘. The corresponding estimates for the second and third 
order schemes are @(U*N-‘) and 8(]113 (2/N)3/2), respectively. These estimates are 
likely to be conservative away from the end points x = f 1. They can be expected to 
be less conservative near x = f 1 where the solution of (3.12) fails to have a 
derivative. Hence this example will illustrate the use of a second and third order 
scheme to accelerate the nodal convergence of a first order scheme based on an 
elementary but practical projection. Moreover it serves to illustrate the accelerated 
convergence of the approximate solutions (2.14), particularly at the end points 
x = fl where the effect of the singular kernel is most pronounced. For this reason a 
comparison is made between the first three higher order schemes with 20 nodes and 
60 nodes. 

Equation (2.9) defines the fust order approximation to (3.13): 

UI(X) = $J ai”ei(x). 
i=l 

The coefficients in (3.14) from the components of an N-dimensional column vector 
X”’ that satisfies 

$1) _ a$” = ,#$I’ (3.15) 
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with E(‘) = Y(r) + A(Y (*) - AY”‘). Here A is an N x N matrix with elements 
ak, = ai( where 

a,(x) = (3.16) 

Y(l) and P*) are N-dimensional column vectors with components y:” =g(xz), 
yjr2’ = g(*)(xz), respectively, and 

g’*‘(x)=(l Ix-tl-“g(t)& -1 
The first order approximation to the solution of (3.12) 

yl(X) = g(X) + 5 (ai” - yj”) ei(X) 
i=l 

is obtained from (2.14) with n = 1. 
Equation (2.10) defines the second order approximation to (3.13): 

(3.17) 

(3.18) 

u*(x) = i aI*‘e,(x). 
i=l 

(3.19) 

The coeffkients in (3.19) form the components of the solution vector to 

$2’ - &p’ - A*@ - ‘42) $2’ = p, (3.20) 

where E(*) =E(') +J2(p3) -Ay(*) - (B -A ‘) Y”‘). The elements of the N x N 
matrix B are pki =pi(x:) and the components of the column vector F3) are 
yi3’ = gt3)(xt). Here 

and 

/3*(x,=jX’ j1 Ix-tl-“It-<l-“dtd< (3.21) 
Xi-1 -1 

g(3)(x)= j1 j1 Ix-tl-"It-rl-"g(r)dtd~. (3.22) 
-1 -1 

Equation (2.14) with n = 2 gives the second order approximate solution of (3.12) as 

y*(x) = g(x) + rig’*‘(x) + A 5 (a;*’ - yj”) q(x) 
i=l 

I 

N 
(2) a, - yi” - &+” - L C a,,(~~’ - $)I e*(x). (3.23) 

i=l k=l 
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The third order approximation to (3.13) is obtained by solving (2.5) with n = 3. 
Thus the coefftcients of 

u3(x) = 2 ai”e,(x) 
i=l 

(3.24) 

are defined by the solution vector of 

X’3’-h4X(3)-~2(B-A2)X(3)-~3(C-BA-AB+A3)X(3)=E(3), (3.25) 

where 

E(3) = E’*’ + k3( y(4) - A yt3) - (B -A ‘) y(*) - (C - BA - AB + A ‘) y”‘), 

C is an N x N matrix with elements yki = JJ~(x~) and P4) is a column vector with 
components yr’ = g”‘(x$). Here 

y,(x)= j j1 j1 Ix-sl-“It-rl-“Ir-?I-“drdrd~ (3.26) 
xi-, -1 -1 

and 

g'"'(x)= j1 j1 j1 Ix-rI-"Ir-rl-*Ir-ttI-"g(tl)drdrdtl. (3.27) 
-1 -1 -1 

The third order approximate solution of (3.12), obtained from (2.14) with IZ = 3, is 

y3(x) = g(x) + Ag’*‘(x) + 12g’3’(x) + A2 $ $)/3,(x) 
i=l 

I I a,(x) i=l k=l 

I %kvk 
i=l k=l 

(*) + ?* i (i atlalk -bik) v:‘I el(x),(3.28) 
k=l I=1 

where u(‘) = 43’- (1). Yi 3 4') =q -my;*) and ui3) =,;*) - ~*yj3). 

For c(x) = x2 and a = f the integrals (3.16), (3.17), (3.21), (3.22), (3.26) and 
(3.27) can be evaluated and the systems (3.15), (3.20) and (3.25) analyzed without 
resorting to numerical integrations. The resulting approximations for selected nodal 
values of the solution to (3.12) with A = - f are tabulated in Tables 1I.a and 1I.b for 
20 and 60 nodes, respectively. 

Tables 1I.a and 1I.b show clearly the convergence of the nodal values with 
increasing order as well as increasing A? Moreover, of the three schemes the third 
order changes least as N increases from 20 to 60. 

This reflects the greater accuracy of the 20-point third order scheme which is 
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TABLE 1I.a 

.Nodal Values of the Solution to (3.12) with A= - 4 Using a 
20-Point Piecewise Constant Interpolant 

Node 1st order 2nd order 3rd order 

0.95 0.520439 
0.85 0.367219 
0.75 0.255 111 
0.65 0.165245 
0.55 9.21965 E - 2 
0.45 3.34467 E - 2 
0.35 -1.24062 E - 2 
0.25 -4.62116 E - 2 
0.15 -6.84947 E - 2 
0.05 -7.95645 E - 2 

0.5 19460 
0.366992 
0.254871 
0.164981 
9.19131 E - 2 
3.31491 E - 2 

-1.27142 E - 2 
-4.65267 E - 2 
-6.88 144 E - 2 
-7.98864 E - 2 

0.519568 
0.366987 
0.254892 
0.165017 
9.19584. E-2 
3.32009 E-2 

-1.26581 E - 2 
4.64677 E - 2 

-6.87536 E - 2 
-7.98248 E - 2 

TABLE 1I.b 

Nodal Values of the Solution to (3.12) with L = - $ Using a 
60-Point Piecewise Constant Interpolant 

Node 

0.95 0.519717 
0.85 0.367077 
0.75 0.254961 
0.65 0.165077 
0.55 9.20132 E - 2 
0.45 3.32523 E - 2 
0.35 -1.26086 E - 2 
0.25 -4.64195 E - 2 
0.15 -6.87063 E - 2 
0.05 -7.97778 E - 2 

1 st order 2nd order 3rd order 

0.5 19556 
0.366990 
0.254887 
0.165008 
9.19474 E - 2 
3.31881 E-2 

-1.26719 E - 2 
-4.64821 E - 2 
-6.87684 E - 2 
-7.98399 E - 2 

0.519558 
0.366993 
0.254891 
0.165013 
9.19525 E - 2 
3.31936 E - 2 

-1.26662 E - 2 
-4.64764 E - 2 
-6.87627 E - 2 
-7.98341 E - 2 

TABLE 11.~ 

First, Second and Third Order Estimates for the Solution of (3.12) at the End Point x = 1 

Number of nodes 1 st order 2nd order 3rd order 

20 0.617939 0.692628 0.6885 13 
40 0.624227 0.691734 0.688680 
60 0.630547 0.691097 0.688766 

60-node error 0.058568 0.001982 0.000349 

Note. These estimates, for the case g(x) =x2, a = f and A= - 4, are a result of a piecewise constant 
analysis employing (3.13). They are obtained by evaluating of (3.18), (3.23) and (3.28) at x = 1. The 
error estimates are based on a ‘IO-node second order piecewise linear analysis of (3.12), see Table 1I.d. 
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TABLE I1.d 

First and Second Order Estimates for the Solution of (3.12) at the End Point x = 1. 

Number of nodes 1 st order 2nd order 

20 0.680747 0.690056 
40 0.684497 0.689349 
60 0.685854 0.689162 

60node error 0.00326 1 0.000047 

Note. These estimates, for the case g(x) = x2, a = 4 and A= - f , are a result of a piecewise linear 
analysis employing (3.29). The error estimates are based on the ‘IO-node second order result (0.689 115). 

estimated at 10W5. The corresponding estimates for the maximum error associated 
with the 20 -point second and first order schemes are 10e4 and 10p3, respectively. 

Since the functional y(l) is not included in the definition (3.13) the approximate 
solutions (3.18), (3.23) and (3.28) must be employed to obtain first, second and third 
order estimates for the solution of (3.12) at the end point x = 1. These estimates are 
tabulated in Table 11.~ for the case I = - 1. Although each of the three orders 
converges more slowly than in the interior, the accelerated convergence of the second 
and third order schemes relative to the first order is clearly evident. 

As in the Model Problem (Section 3.2) further acceleration of the convergence rate 
can be achieved by employing either a fourth order scheme based on (3.13) or a 
lower order scheme based on an alternate projection. This is illustrated in Table 1I.d 
where the end point estimates of y(l), obtained from a first and second order analysis 
of (3.12) employing 

PY = : Y(Xi) oft 
i=l 

(3.29) 

are tabulated. Here (3.29) represents a piecewise linear interpolant defined on the 
uniform mesh -l=x,,(x,(...<x,=l, x,=-1+2iN-‘, with the ri given by 
(3.5~(3.7). Comparison of Tables 11.~ and 1I.d indicate that for (3.12) with a = f a 
first (second) order piecewise linear scheme is comparable to a second (fourth) order 
piecewise constant scheme. 

3.4. Love’s Equation 
Numerical investigations of the Love equations [ 151, 

(3.30) 

have been reported by several authors. Finite-difference [ 161, and quadrature 
methods, [ 171, have been applied to (3.30) with d= 1. The use of polynomial 
collocation and Chebyshev series techniques for d > 0 are discussed in [2] and [ 131, 
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respectively. The present analysis of (3.30) employs the first and second order 
schemes associated with the piecewise constant interpolant (3.13). Also reported, for 
comparative purposes, are the results of an analysis based on the piecewise linear 
interpolant (3.29). 

The first order schemes 

N 

a: l 7L-’ C akiai 9 
*=I l<k<N 

i=l 

(3.3 1) 

with 

ski = tan-’ (G-p) -tan-l (xr;x,) 

determine the coeffkients of a step function, u: (x) = JJy= I a:e,(x), approximation to 

Py * (X) = ~ y * (Xi*) ei(X). 
i=l 

Here y* are the solutions of (3.30). And XT, et(x) = 1 (0) for xi-i < x <xi 
(otherwise) are the midpoint and characteristic function of the interval (x1-i, xi] 
defined by the nodes x1 = -1 + 2iN-‘, 0 < i < N. In addition it follows from 
with n = 1 that the step functions y:(x) = u:(x) are first order interpolants 
solutions of (3.30). 

The second order schemes 

b: f n-l 5 a,,bf -n-’ ,$ (Bki- 5 auaji) b: = 1, 1 < k < NT 
i=l j=l 

where 

/~,~=lf, (d2+(x;--5)2)(tad (q)-tm’ (xi-;-‘)) dt (3.33) 

(2.14) 
to the 

(3.32) 

determine the coefficients of u:(x) = Cy=, bfe,(x). The approximate solutions 

Y:(x)= k$l ] (6: f 71-l 1$1 ad?) ek(X) 

f nplb:-(tanml (7) -tan-’ (“-2-l)) 1 (3.34) 

obtained from (2.14) with n = 2 represent second order interpolants to the solutions 
of (3.30). 
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TABLE I1I.a 

Nodal Values of the Solutions to (3.30) with d = 1 Using a 
5- and 15-Point Piecewise Constant Interpolant 

The nodal values of v’(x) The nodal values of y-(x) 

First order Second order First order Second order 

.Node N=5 N= 15 N=5 N= 15 N=5 N= 15 N=5 N= 15 

0.95 - 0.744301 
0.8 0.722834 0.722526 
0.66 - 0.703099 
0.53 - 0.68675 1 
0.4 0.674028 0.673903 
0.26 - 0.664725 
0.13 - 0.659239 
0.0 0.657457 0.657416 

- 0.744258 
0.722488 0.722488 

- 0.703068 
- 0.686729 

0.673888 0.673888 
- 0.664716 
- 0.659233 

0.657412 0.657412 

- 1.67103 - 1.67083 
1.73246 1.73093 1.73075 1.73075 

- 1.78542 - 1.78525 
- 1.83223 - 1.83208 

1.87087 1.86977 1.86964 1.86964 
- 1.89707 - 1.89695 
- 1.91361 - 1.91350 

1.92003 1.91914 1.91903 1.91903 

The solutions of (3.31) and (3.32) with d = 1 are listed in Table 1II.a for N = 5 
and 15. A Romberg integration technique was used to evaluate (3.33). Inspection of 
Table 1II.a indicates that the 5-point second order scheme is at least 100 times more 
accurate than the corresponding first order scheme and yields approximations to the 
nodal values of y+ and y- with errors of the order 10P6. 

The second order interpolants (3.34) are tabulated in Table 1II.b for selected 
arguments. The results obtained in [2] using a 20-point polynomial collocation 
scheme are listed in Table 111.~. Comparison of Tables 1II.b and 111.~ indicate that the 

TABLE III.\, 

Selected Values of the Second Order Interpolant (3.34) to the Solutions of (3.30) with d = 1 Using 5, 7 
and 10 nodes 

Interpolated values of y+ (x) Interpolated values of y-(x) 

X N=5 N=7 N= 10 N=5 N=7 N= 10 

1.0 0.755783 0.755739 0.755725 1.63988 1.63976 1.63971 
0.95 0.747150 0.747112 0.747100 1.66325 1.66314 1.66310 
0.90 0.738685 0.738654 0.738646* 1.68628 1.68619 1.68617* 
0.80 0.722488* 0.722476 0.722500 1.73075* 1.73071 1.73078 
0.60 0.694579 0.694488 0.694493 1.81002 1.80976 1.80978 
0.40 0.673888 * 0.673911 0.673898 1.86964* 1.86970 1.86967 
0.20 0.661540 0.661502 0.661520 1.90666 1.90655 1.90660 
0.0 0.657412* 0.657412* 0.657410 1.91903* 1.91903* 1.91903 

Note. The accuracy of the interpolant (3.34) varies with x as well as N. For a fixed N the greatest 
accuracy occurs at the nodes, indicated by an asterisk, where the error is approximately 10m6. 
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TABLE 111.~ 

20-Node Polynomial Collocation Solution of (3.30) 
with d = 1 as Reported in [2] 

X Y’(X) Y-w 

1.0 0.7557 1.640 
0.95 0.7471 1.663 
0.90 0.7386 1.686 
0.80 0.7225 1.731 
0.60 0.6945 1.810 
0.40 0.6739 1.870 
0.20 0.6615 1.907 
0.0 0.6574 1.919 

second order interpolants (3.34) employing seven nodes are as accurate as a 
polynomial scheme employing approximately three times as many nodes. 

An easily obtained estimate, b(N-*), for the accuracy of (3.34) implies that these 
second order interpolants are comparable with first order interpolants derived from 
(2.14) using the piecewise linear projection (3.29). Acceleration of these schemes 
results in second order interpolants with estimated accuracy b(W4). Selected values 
of these interpolants are tabulated in Table 1II.d. 

TABLE 1II.d 

Selected Values of Second Order Approximate Solutions of (3.30) Obtained from (2.14) with n = 2 and 
Employing the Piecewise Linear Interpolant (3.29) 

Interpolated values of y ’ (x) Interpolated values of y-(x) 
- 

X 3 nodes 4 nodes 5 nodes 3 nodes 4 nodes 5 nodes 

1.0 0.755814 0.755734 0.755723 1.63904 1.63958 1.63966 
0.95 0.747105 0.747096 0.747097 1.66218 1.66293 1.66304 
0.90 0.73857 0.738630 0.738642 1.68501 1.68596 1.6861 I 
0.80 0.722256 0.722445 0.722477 1.72912 1.73046 1.73067 
0.60 0.694034 0.694418 0.694473 1.80744 1.80938 1.80966 
0.40 0.673424 0.673876 0.673868 1.86720 1.86938 1.8695 1 
0.20 0.661252 0.661449 0.661480 1.90461 1.90615 1.90641 
0.0 0.657550 0.657294 0.657419 1.91808 1.91843 1.91898 

Note. Comparison with the results tabulated in Table 111.~ indicate that the five node approximation 
is as accurate as a polynomial scheme employing four times as many nodes. 
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